Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2025.0...
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioscience Biotechnology and Biochemistry
Article . 2025 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

Antimycin A, but not antimycin A3 or myxothiazol, directly suppresses photosystem II activity

Authors: Ko Imaizumi; Kentaro Ifuku;

Antimycin A, but not antimycin A3 or myxothiazol, directly suppresses photosystem II activity

Abstract

Abstract Antimycin A (AA) is a widely used inhibitor to study photosynthesis and respiration. In photosynthesis, it is commonly used to inhibit a pathway of cyclic electron flow around photosystem I (CEF-PSI), but has also been reported to affect photosystem II (PSII), not involved in CEF-PSI. Although concerns have been raised about AA’s specificity, its impact on PSII activity remains unclear. AA3 was recently proposed as a more specific inhibitor of the same CEF-PSI pathway. In the mitochondrial respiratory chain, AA inhibits complex III, like myxothiazol. Here, we investigated the direct effects of AA, AA3, and myxothiazol on PSII activity and linear photosynthetic electron transport using isolated plant PSII and thylakoid membranes. AA, but neither AA3 nor myxothiazol, directly suppressed PSII activity and linear electron transport. Furthermore, the extent of AA’s effects was batch-dependent. Thus, we propose using AA3 to inhibit CEF-PSI, and myxothiazol to inhibit complex III, instead of AA.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid