
Ionotropic glutamate receptors function in animals as glutamate-gated non-selective cation channels. Numerous glutamate receptor-like (GLR) genes have been identified in plant genomes, and plant GLRs are predicted, on the basis of sequence homology, to retain ligand-binding and ion channel activity. Non-selective cation channels are ubiquitous in plant membranes and may function in nutrient uptake, signalling and intra-plant transport. However, there is little evidence for amino acid gating of plant ion channels. Recent evidence suggests that plant GLRs do encode non-selective cation channels, but that these channels are not gated by amino acids. The functional properties of these proteins and their roles in plant physiology remain a mystery. The problems surrounding characterization and assignation of function to plant GLRs are discussed in this Botanical Briefing, and potential roles for GLR proteins as non-selective cation channels involved in metabolic signalling are described.
Evolution, Molecular, Receptors, Glutamate, Molecular Sequence Data, Arabidopsis, Animals, Amino Acid Sequence, Plants, Signal Transduction
Evolution, Molecular, Receptors, Glutamate, Molecular Sequence Data, Arabidopsis, Animals, Amino Acid Sequence, Plants, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 179 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
