
Biomarker use in exposure assessment is increasingly common, and consideration of related issues is of growing importance. Exposure quantification may be compromised when measurement is subject to a lower threshold. Statistical modeling of such data requires a decision regarding the handling of such readings. Various authors have considered this problem. In the context of linear regression analysis, Richardson and Ciampi (Am J Epidemiol 2003;157:355-63) proposed replacement of data below a threshold by a constant equal to the expectation for such data to yield unbiased estimates. Use of such an imputation has some limitations; distributional assumptions are required, and bias reduction in estimation of regression parameters is asymptotic, thereby presenting concerns about small studies. In this paper, the authors propose distribution-free methods for managing values below detection limits and evaluate the biases that may result when exposure measurement is constrained by a lower threshold. The authors utilize an analytical approach and a simulation study to assess the effects of the proposed replacement method on estimates. These results may inform decisions regarding analytical plans for future studies and provide a possible explanation for some amount of the discordance seen in extant literature.
Decision Making, Environmental Exposure, 310, Risk Assessment, Logistic Models, Bias, Humans, Public Health, Monte Carlo Method, Biomarkers, Statistical Distributions
Decision Making, Environmental Exposure, 310, Risk Assessment, Logistic Models, Bias, Humans, Public Health, Monte Carlo Method, Biomarkers, Statistical Distributions
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 268 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
