
pmid: 10919971
Exercise increases the generation of oxygen free radicals and lipid peroxidation. Strenuous exercise in a person who is unconditioned or unaccustomed to exercise will induce oxidative damage and result in muscle injury. However, aerobic exercise training strengthens the antioxidant defense system by increasing superoxide dismutase. Vitamin C and, especially, vitamin E are shown to decrease the exercise-induced increase in the rate of lipid peroxidation. No ergogenic effects of either vitamin C or E have been shown. Vitamin E was shown to significantly increase circulating neutrophils in older, but not younger, subjects performing eccentric exercise that causes an increase in skeletal muscle damage. In addition to its effect in augmenting the neutrophil response to eccentric exercise, vitamin E causes a greater increase in circulating creatine kinase activity, perhaps indicating increased skeletal muscle repair. Increased vitamin E intake has been associated with enhanced glucose tolerance and insulin action as well as improved lipoprotein status. Future research should examine the combined effects of exercise training and vitamins E and C on these health-related outcomes.
Adult, Male, Neutrophils, Age Factors, Ascorbic Acid, Middle Aged, Antioxidants, Oxygen Consumption, Dietary Supplements, Cytokines, Humans, Vitamin E, Female, Muscle, Skeletal, Reactive Oxygen Species, Creatine Kinase, Exercise, Aged
Adult, Male, Neutrophils, Age Factors, Ascorbic Acid, Middle Aged, Antioxidants, Oxygen Consumption, Dietary Supplements, Cytokines, Humans, Vitamin E, Female, Muscle, Skeletal, Reactive Oxygen Species, Creatine Kinase, Exercise, Aged
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 169 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
