Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Transactions of the American Mathematical Society
Article . 1959 . Peer-reviewed
Data sources: Crossref
Transactions of the American Mathematical Society
Article . 1959 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Immersions of manifolds

Authors: Hirsch, Morris W;

Immersions of manifolds

Abstract

IMMERSIONS OF MANIFOLDSC) BY MORRIS W. HIRSCH Introduction Let M and N be differentiable manifolds of dimensions k and n respec- tively, k N is called an immersion if / is of class C1 and the Jacobian matrix of/ has rank k at each point of M. Such a map is also called regular. Until recently, very little was known about the ex- istence and classification of immersions of one manifold in another. The present work addresses itself to this problem and reduces it to the problem of constructing and classifying cross-sections of fibre bundles. In 1944, Whitney [15] proved that every ^-dimensional manifold can be immersed in Euclidean space of 2k — 1 dimensions, P2*-1. The Whitney- Graustein theorem [13] classifies immersions of the circle S1 in- the plane E2 up to regular homotopy, which is a homotopy / En, k /') and (g, g') are regularly homotopic (in a sense to be defined later). Given two immersions/, g: £>*—»£ that agree on S*_1 and have the same first derivatives at points of S*_1, Q(f, g) is an element of a certain homotopy group, and has the following properties: (1) Q(f, g) =0 if and only if/and g are regularly homotopic rel S*-1, i.e., the homotopy agrees with / and g on Si_1 at each stage, up to the first derivative; (2) fl(/, g) enjoys the usual algebraic properties of a difference cochain. At this point we should like to be able to make the following statement: If / is an immersion of the Received by the editors September 29, 1958. (*) The material in this paper is essentially a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University of Chicago, 1958. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Country
United States
Related Organizations
Keywords

topology, immersions, cross section, Applied Mathematics, General Mathematics, homotopy, Manifolds, Pure Mathematics, tangent bundles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    408
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
408
Top 10%
Top 0.1%
Top 10%
Green
bronze