
The process of imbedding a group in a larger group of some prescribed type has been one of the most useful tools in the investigation of properties of groups. The three principal types of representation of groups, each with its particular field of usefulness, are the following: 1. Permutation groups. 2. Monomial groups. 3. Linear or matrix representations of groups. These three types of representation correspond to an imbedding of the group in the following groups: 1. The symmetric group. 2. The complete monomial group. 3. The full linear group. The symmetric group and the full linear group have both been exhaustively investigated and many of their principal properties are known. A similar study does not seem to exist for the complete monomial group. Such a general theory seems particularly desirable in view of the numerous recent investigations on finite groups in which the monomial representations are used in one form or another to obtain deep-lying theorems on the properties of such groups. The present paper is an attempt to fill this lacuna. In this paper the monomial group or symmetry is taken in the most general sense(') where one considers all permutations of a certain finite number of variables, each variable being multiplied also by some element of a fixed arbitrary group H. In the first chapter the simplest properties such as transformation, normal form, centralizer, etc., are discussed. Some of the auxiliary theorems appear to have independent interest. One finds that the symmetry contains a normal subgroup, the basis group, consisting of all those elements which do not permute the variables. The symmetry splits over the basis group with a group isomorphic to the symmetric group as one representative group. A complete solution of the problem of finding all representative groups in this splitting of the symmetry is given. This result is of interest since it gives a general idea of the solution of the splitting problem in a fairly complicated case. In the second chapter all normal subgroups of the symmetry are deter-
Group theory
Group theory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
