
Es sei \( \zeta_{K}(s) \) die Zetafunktion eines kubischen Zahlkörpers von negativer Diskriminante \(d\). Carlitz setzt \[ \begin{array}{l} \frac{\zeta_{R}(s)}{\zeta(s)}=\sum_{n=1}^{\infty} \frac{G(n)}{n^{8}} \quad(\sigma>1) \\ M(y)=\sum_{n=1}^{\infty} G(n) e^{\frac{2 n \pi y i}{\sqrt{|d|}}} \quad(\widetilde{\Im} y>0) \end{array} \] und gewinnt für \( M(y) \) die Transformationsformel \[ M(y)=-\frac{1}{y i} M\left(-\frac{1}{y}\right) \] Zum Beweise werden 1. die von Artin im allgemeineren Rahmen gegebene Darstellung \( \zeta_{K}(s)=\zeta(s) \sqrt{L_{1}(s) L_{2}(s)}, \) wobei \( L_{1} \) und \( L_{2} \) geeignete konjugierte \( L \) -Reihen des imaginärquadratischen Körpers \( k(\sqrt{d}) \) sind; \( 2 . \) die Heckesche Funktionalgleichung von \( \zeta_{K}(s) \) herangezogen.
Cubic and quartic extensions, function related to zeta-function of cubic field, Zeta functions and \(L\)-functions of number fields, transformation formula
Cubic and quartic extensions, function related to zeta-function of cubic field, Zeta functions and \(L\)-functions of number fields, transformation formula
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
