Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tissue Engineeringarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Tissue Engineering
Article . 2007 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Three-Dimensional Microenvironments Retain Chondrocyte Phenotypes During Proliferation Culture

Authors: Tsuguharu, Takahashi; Toru, Ogasawara; Yukiyo, Asawa; Yoshiyuki, Mori; Eiju, Uchinuma; Tsuyoshi, Takato; Kazuto, Hoshi;

Three-Dimensional Microenvironments Retain Chondrocyte Phenotypes During Proliferation Culture

Abstract

Although autologous chondrocyte implantation has already been in clinical use, chondrocyte dedifferentiation is problematic during proliferation culture. We attempted a three-dimensional (3D) collagen gel culture under chondrocyte proliferation with repeated passaging to prevent the chondrocytes dedifferentiation. Human auricular chondrocytes were cultured in 3D or conventional monolayer conditions, which reached a 1000-fold increase in cell numbers at passages 3 and 4, respectively. During multiplication, the chondrocytes in 3D culture showed greater suppression of collagen type I (COL1) and preservation of collagen type II (COL2) than those in monolayer. Tissue-engineered cartilage made of 3D cells also abundantly accumulated COL2 or proteoglycan and possessed favorable mechanical properties. The advantage of 3D cells may result from the similarity of microenvironments in cell-to-matrix adhesion or cell-to-cell contacts with that of native cartilage. The up-regulation of integrins and down-regulation of cadherins in the 3D cells mimicked the expression pattern of native cartilage, rather than that of monolayer cells. The silencing of integrin beta1 and Ob-cadherin expression by small interfering ribonucleic acid in the cultured chondrocytes led to the promotion of dedifferentiation and redifferentiation, respectively, indicating that the 3D collagen gel culture provided sufficient cell preparation and reduced chondrocyte dedifferentiation, which is regarded as a feasible strategy in autologous chondrocyte implantation.

Related Organizations
Keywords

Chondrocytes, Phenotype, Adolescent, Cell Culture Techniques, Humans, Child, Cells, Cultured, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!