
pmid: 20536359
Emerging data suggest that mesenchymal stem cells (MSCs) are part of a periendothelial niche, suggesting the existence of heterotypic cell-cell crosstalk between endothelial cells and MSCs that regulate MSCs in their local microenvironment. We determined the effects of paracrine factors secreted by human umbilical vein endothelial cells (HUVECs) on MSC survival, proliferation, and differentiation by using an optimized, serum-free HUVEC-conditioned medium (CM). HUVEC-CM induced a significant increase in the size and number of colony-forming units-fibroblast (CFU-F) and CFU-osteoblast (CFU-O) and stimulated the proliferation of MSCs as determined by 5-bromo-2'-deoxyuridine incorporation, compared with non-CM. We also demonstrated that CM significantly enhanced the osteogenic differentiation of MSCs as shown by alkaline phosphatase enzyme histochemistry and von Kossa staining of mineralized nodules as well as by quantitative reverse transcriptase-polymerase chain reaction analysis of osteogenic markers. In contrast, there was no effect on the adipogenic differentiation of MSCs. Bioinformatic integration of HUVEC and MSC gene expression datasets identified several candidate signaling pathways responsible for mediating these effects, including fibroblast growth factor, Wnt, bone morphogenetic protein, and Notch. These data suggest strongly that endothelial cells secrete a soluble factor (or factors) that stimulates progenitor cell activity and, selectively, the osteogenic differentiation of MSCs that could contribute to niche exit.
Cell Survival, Endothelial Cells, Cell Differentiation, Mesenchymal Stem Cells, Alkaline Phosphatase, Osteocytes, Umbilical Cord, Androstadienes, Culture Media, Conditioned, Paracrine Communication, Adipocytes, Humans, Benzimidazoles, Wortmannin, Protein Kinase Inhibitors, Cells, Cultured, Cell Proliferation
Cell Survival, Endothelial Cells, Cell Differentiation, Mesenchymal Stem Cells, Alkaline Phosphatase, Osteocytes, Umbilical Cord, Androstadienes, Culture Media, Conditioned, Paracrine Communication, Adipocytes, Humans, Benzimidazoles, Wortmannin, Protein Kinase Inhibitors, Cells, Cultured, Cell Proliferation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 66 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
