
pmid: 9697097
To achieve coordinate gene regulation, yeast (Saccharomyces cerevisiae) appears to have exploited two distinct multifunction "operon" schemas: one, by concatenating originally separate functional domains into single polypeptides, and two, by linking opposite strand genes through common promoter elements. For example, distinct functions found in bacterial operons are often concatenated in yeast. A selective advantage, similar to that for bringing multiple related functions into a single peptide, may also explain the large numbers of yeast opposite-strand, ORF pairs sharing a common regulatory region.
Fungal Proteins, Gene Expression Regulation, Fungal, Operon, Escherichia coli, Shikimic Acid, Saccharomyces cerevisiae, Genome, Fungal, Promoter Regions, Genetic
Fungal Proteins, Gene Expression Regulation, Fungal, Operon, Escherichia coli, Shikimic Acid, Saccharomyces cerevisiae, Genome, Fungal, Promoter Regions, Genetic
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
