Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Human Gene Therapyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Gene Therapy
Article . 2004 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Adenovirus Structure

Authors: John J, Rux; Roger M, Burnett;

Adenovirus Structure

Abstract

Structural studies continue to play an essential role as the focus of adenovirus research shifts in emphasis from basic biology to adenovirus-based vector technologies. A crucial step in developing novel therapeutics for gene replacement, cancer, and vaccines is often to modify the virion. Such engineered changes are designed to retarget the virus, or to reduce the immunological responses to infection. These efforts are far more effective when they are based on detailed structural knowledge. This minireview provides a brief summary of the wealth of information that has been obtained from the combined application of X-ray crystallography and electron microscopy. This knowledge now includes a good working model for the architectural organization of the virion, and atomic resolution molecular structures for all the major capsid proteins, hexon, penton, and fiber. We highlight new developments, which include the structure of the penton base and the discovery that adenovirus has several relatives. We sketch how the structural information can be used to engineer novel virions and conclude with the prospects for future progress.

Related Organizations
Keywords

Models, Molecular, Viral Structural Proteins, Adenoviruses, Human, Virion, Viral Nonstructural Proteins, Crystallography, X-Ray, Protein Structure, Tertiary, Microscopy, Electron, Humans, Capsid Proteins, Forecasting

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!