Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Health Securityarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Health Security
Article . 2019 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
Health Security
Article . 2019
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decontamination of Personal Protective Equipment

Authors: Karin Lemmer; Ingeborg Schwebke; Roland Grunow; Georg Pauli; Martin Mielke; Sabine Howaldt;

Decontamination of Personal Protective Equipment

Abstract

Exploratory field analyses of the inactivation capacity of disinfectants on contaminated personal protective equipment (PPE) are required to select a suitable surrogate for biohazardous agents like spores of Bacillus anthracis. The objectives of our study were (1) the determination of an appropriate surrogate for the inactivation of spores of B. anthracis with peracetic acid (PAA), and (2) application of optimized inactivation conditions for an effective decontamination of PPE with PAA under field conditions. For inactivation studies, B. anthracis spores from different strains and B. thuringiensis spores were fixed by air drying on carriers prepared from PPE fabric. Time and concentration studies with PAA-based disinfectants revealed that the spores of the B. thuringiensis strain DSM 350 showed an inactivation profile comparable to that of the spores of the B. anthracis strain with the highest stability, implying that B. thuringiensis can serve as an appropriate surrogate. Rapid (3 to 5 minutes) and effective surface decontamination was achieved with 2% PAA/0.2% surfactant. In field studies, PPE contaminated with spores of B. thuringiensis was treated with the disinfectant. Optimizing the decontamination technique revealed that spraying in combination with brushing was effective within 5 minutes of exposure.

Related Organizations
Keywords

Spores, Bacterial, Bacillus anthracis, Bacillus thuringiensis, Peracetic Acid, Personal Protective Equipment, Decontamination, Disinfectants

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!