
Ebola virus (EBOV) can cause a devastating hemorrhagic disease, leading to death in a short period of time. After infection, the resulting EBOV disease results in high levels of circulating cytokines, endothelial dysfunction, coagulopathy, and bystander lymphocyte apoptosis in humans and nonhuman primates. The VP40 matrix protein of EBOV is essential for viral assembly and budding from the host cell. Recent data have shown that VP40 exists in the extracellular environment, including in exosomes, and exosomal VP40 can impact the viability of recipient immune cells, including myeloid and T cells, through the regulation of the RNAi and endosomal sorting complexes required for transport pathways. In this study, we discuss the latest findings of the impact of exosomal VP40 on immune cells in vitro and its potential implications for pathogenesis in vivo.
Apoptosis, Biological Transport, Endosomes, Hemorrhagic Fever, Ebola, Ebolavirus, Exosomes, Viral Matrix Proteins, Humans, RNA Interference, Lymphocytes
Apoptosis, Biological Transport, Endosomes, Hemorrhagic Fever, Ebola, Ebolavirus, Exosomes, Viral Matrix Proteins, Humans, RNA Interference, Lymphocytes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
