
We study a simple abstract problem motivated by a variety of applications in protein sequence analysis. Consider a string of 0s and 1s of length L, and containing D 1s. If we believe that some or all of the 1s may be clustered near the start of the sequence, which subset is the most significantly so clustered, and how significant is this clustering? We approach this question using the minimum description length principle and illustrate its application by analyzing residues that distinguish translational initiation and elongation factor guanosine triphosphatases (GTPases) from other P-loop GTPases. Within a structure of yeast elongation factor 1[Formula: see text], these residues form a significant cluster centered on a region implicated in guanine nucleotide exchange. Various biomedical questions may be cast as the abstract problem considered here.
Saccharomyces cerevisiae Proteins, Sequence Analysis, Protein, GTP Phosphohydrolase-Linked Elongation Factors, Cluster Analysis, Computational Biology, Research Articles
Saccharomyces cerevisiae Proteins, Sequence Analysis, Protein, GTP Phosphohydrolase-Linked Elongation Factors, Cluster Analysis, Computational Biology, Research Articles
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
