Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Astrobiology
Article . 2024 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
Astrobiology
Article . 2024
versions View all 4 versions
addClaim

Self-Sustaining Living Habitats in Extraterrestrial Environments

Authors: R. Wordsworth; C. Cockell;

Self-Sustaining Living Habitats in Extraterrestrial Environments

Abstract

Standard definitions of habitability assume that life requires the presence of planetary gravity wells to stabilize liquid water and regulate surface temperature. Here the consequences of relaxing this assumption are evaluated. Temperature, pressure, volatile loss, radiation levels and nutrient availability all appear to be surmountable obstacles to the survival of photosynthetic life in space or on celestial bodies with thin atmospheres. Biologically generated barriers capable of transmitting visible radiation, blocking ultraviolet, and sustaining temperature gradients of 25-100 K and pressure differences of 10 kPa against the vacuum of space can allow habitable conditions between 1 and 5 astronomical units in the solar system. Hence ecosystems capable of generating conditions for their own survival are physically plausible, given the known capabilities of biological materials on Earth. Biogenic habitats for photosynthetic life in extraterrestrial environments would have major benefits for human life support and sustainability in space. Because the evolution of life elsewhere may have followed very different pathways from on Earth, living habitats could also exist outside traditional habitable environments around other stars, where they would have unusual but potentially detectable biosignatures.

Final published version, in press at Astrobiology

Keywords

Earth and Planetary Astrophysics (astro-ph.EP), Extraterrestrial Environment, Exobiology, Temperature, FOS: Physical sciences, Photosynthesis, Ecosystem, Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
Related to Research communities