Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Antioxidants and Red...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Antioxidants and Redox Signaling
Article . 2017 . Peer-reviewed
License: Mary Ann Liebert TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Glutathione Degradation

Authors: Anand Kumar, Bachhawat; Amandeep, Kaur;

Glutathione Degradation

Abstract

Glutathione degradation has for long been thought to occur only on noncytosolic pools. This is because there has been only one enzyme known to degrade glutathione (γ-glutamyl transpeptidase) and this localizes to either the plasma membrane (mammals, bacteria) or the vacuolar membrane (yeast, plants) and acts on extracellular or vacuolar pools. The last few years have seen the discovery of several new enzymes of glutathione degradation that function in the cytosol, throwing new light on glutathione degradation. Recent Advances: The new enzymes that have been identified in the last few years that can initiate glutathione degradation include the Dug enzyme found in yeast and fungi, the ChaC1 enzyme found among higher eukaryotes, the ChaC2 enzyme found from bacteria to man, and the RipAY enzyme found in some bacteria. These enzymes play roles ranging from housekeeping functions to stress responses and are involved in processes such as embryonic neural development and pathogenesis.In addition to delineating the pathways of glutathione degradation in detail, a critical issue is to find how these new enzymes impact cellular physiology and homeostasis.Glutathione degradation plays a far greater role in cellular physiology than previously envisaged. The differential regulation and differential specificities of various enzymes, each acting on distinct pools, can lead to different consequences to the cell. It is likely that the coming years will see these downstream effects being unraveled in greater detail and will lead to a better understanding and appreciation of glutathione degradation. Antioxid. Redox Signal. 27, 1200-1216.

Keywords

Bacteria, Yeasts, Cell Membrane, Vacuoles, Animals, Humans, Gene Regulatory Networks, gamma-Glutamyltransferase, Plants, Glutathione

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!