Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
2D Materials
Article . 2023 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
2D Materials
Article . 2023
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The impact of valley profile on the mobility and Kerr rotation of transition metal dichalcogenides

Authors: Thibault Sohier; Pedro M M C de Melo; Zeila Zanolli; Matthieu Jean Verstraete;

The impact of valley profile on the mobility and Kerr rotation of transition metal dichalcogenides

Abstract

Abstract The transport and optical properties of semiconducting transition metal dichalcogenides around room temperature are dictated by electron–phonon scattering mechanisms within a complex, spin-textured and multi-valley electronic landscape. The relative positions of the valleys are critical, yet they are sensitive to external parameters and very difficult to determine directly. We propose a first-principles model as a function of valley positions to calculate carrier mobility and Kerr rotation angles, and apply it to MoS2, WS2, MoSe2, and WSe2. The model brings valuable insights, as well as quantitative predictions of macroscopic properties for a wide range of carrier density. The doping-dependent mobility displays a characteristic peak, the height depending on the position of the valleys. In parallel, the Kerr rotation signal is enhanced when same spin-valleys are aligned, and quenched when opposite spin-valleys are populated. We provide guidelines to optimize and correlate these quantities with respect to experimental parameters, as well as the theoretical support for in situ characterization of the valley positions.

Country
Netherlands
Keywords

Condensed Matter - Materials Science, electron-phonon, transition metal dichalcogenides, Kerr angle, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, 2D materials, density-functional theory, mobility

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green