
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>We investigate the soliton frequency shifts for few-cycle ultrashort laser pulses propagating through resonant media embedded within subwavelength structures, and we elucidate the underlying physics. Full-wave Maxwell?Bloch equations are solved numerically by using the finite-difference time-domain method. It is shown that both soliton blueshift and redshift can occur by changing the period of the structures. We found that the rereflected waves play an essential role in this process. When the pulse propagates through the periodic structures, the reflected waves can be rereflected back by the thin layers, which can further induce the controllable frequency shifts of the generated solitons. This suggests a way to tailor the light solitons over a large spectral range.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
