Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Breath Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Breath Research
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Breath Research
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of media on the differentiation of Staphylococcus spp. by volatile compounds

Authors: Carrie L Jenkins; Heather D Bean;

Influence of media on the differentiation of Staphylococcus spp. by volatile compounds

Abstract

Abstract Staphylococcus aureus asymptomatically colonizes a third of the world’s population, and it is an opportunistic pathogen that can cause life threatening diseases. To diagnose S. aureus infections, it is necessary to differentiate S. aureus from the ubiquitous human commensal Staphylococcus epidermidis, which beneficially colonizes the skin of all humans. Efforts are underway to identify volatile biomarkers for diagnosing S. aureus infections, but to date no studies have investigated whether S. aureus and S. epidermidis can be reliably differentiated under a variety of growth conditions. The overall goal of this study was to evaluate the influence of growth medium on the ability to differentiate S. aureus and S. epidermidis based on their volatile profiles. We used headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) to examine the headspace volatiles of S. aureus and S. epidermidis when aerobically grown in four different complex media. We detected 337 volatile features when culturing S. aureus and S. epidermidis in four complex media, termed the staph volatiles, and found only 20%–40% concurrence in the volatiles produced by these two species in any single medium. Using principal components analysis and hierarchical clustering analysis on the staph volatiles, we observed that S. aureus and S. epidermidis clustered independently from each other, and distinctly clustered by growth medium within species. Removing volatiles that are species and/or media-specific from the analysis reduced the resolution between species clusters, but in all models clustering by species overrode clustering by media type. These analyses suggest that, while volatile profiles are media-specific, species differences dominate the staph volatilome. These data enable future investigations into the identification of volatile biomarkers to discriminate staphylococcal pathogens versus commensals, which will improve staph diagnoses and provide insights into the biochemistry of staph infections and immunity.

Related Organizations
Keywords

Principal Component Analysis, Staphylococcus aureus, Volatile Organic Compounds, Gas Chromatography-Mass Spectrometry, Culture Media, Breath Tests, Staphylococcus epidermidis, Cluster Analysis, Humans, Biomarkers, Solid Phase Microextraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
hybrid