
We study a family of "classical" orthogonal polynomials which satisfy (apart from a 3-term recurrence relation) an eigenvalue problem with a differential operator of Dunkl-type. These polynomials can be obtained from the little $q$-Jacobi polynomials in the limit $q=-1$. We also show that these polynomials provide a nontrivial realization of the Askey-Wilson algebra for $q=-1$.
20 pages
Mathematics - Classical Analysis and ODEs, 33C45, 33C47, 42C05, Classical Analysis and ODEs (math.CA), FOS: Mathematics
Mathematics - Classical Analysis and ODEs, 33C45, 33C47, 42C05, Classical Analysis and ODEs (math.CA), FOS: Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 930 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
