
In this paper, we extend past work done on the application of the mathematics of category theory to quantum information science. Specifically, we present a realization of a dagger-compact category that can model finite-dimensional quantum systems and explicitly allows for the interaction of systems of arbitrary, possibly unequal, dimensions. Hence our framework can handle generic tensor network states, including matrix product states. Our categorical model subsumes the traditional quantum circuit model while remaining directly and easily applicable to problems stated in the language of quantum information science. The circuit diagrams themselves now become morphisms in a category, making quantum circuits a special case of a much more general mathematical framework. We introduce the key algebraic properties of our tensor calculus diagrammatically and show how they can be applied to solve problems in the field of quantum information.
25 pages, 20 figures. Published version
Quantum Physics, FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
Quantum Physics, FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
