<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A coarse-graining of spin networks is expressed in terms of partial tracing, thus allowing to use tools of quantum information theory. This is illustrated by the analysis of a simple black hole model, where the logarithmic correction of the Bekenstein-Hawking entropy is shown to be equal to the total amount of correlations on the horizon. Finally other applications of entanglement to quantum gravity are briefly discussed.
RevTex, 5 pages. Proceedings of QG'05, Cala Gonone, 2005 Relations of the coarse-graining and partial tracing are clarified, and the references are updated
Quantum Physics, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantum Physics (quant-ph), General Relativity and Quantum Cosmology
Quantum Physics, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantum Physics (quant-ph), General Relativity and Quantum Cosmology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |