Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research in Astronom...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research in Astronomy and Astrophysics
Article . 2011 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling blue stragglers in young clusters

Authors: Pin Lu; Licai Deng; Xiaobin Zhang;

Modeling blue stragglers in young clusters

Abstract

In this paper, a grid of the binary evolution models are calculated for the study of blue straggler (BS) population in intermediate age ($\log Age$=7.85-8.95) star clusters. The BS formation via mass transfer and merging is studied systematically using our models. Both Case A and B close binary evolutionary tracks are calculated in a large range of parameters. The results show that BSs formed via Case B are generally bluer and even more luminous than those produced by Case A. Furthermore, the larger range in orbital separations of Case B models provide a probability of producing more BSs than Case A. Based on the grid of models, several Monte-Carlo simulations of BS populations in the clusters in the age range are carried out. The results show that BSs formed via different channels populate different areas in color magnitude diagram(CMD). The locations of BSs in CMD for a number of clusters are compared to our simulations as well. In order to investigate the influence of mass transfer efficiency in the models and simulations, a set of models are also calculated by implementing a constant mass transfer efficiency, $��$=0.5 during Roche lobe overflow (Case A binary evolution excluded). The result shows BSs can be formed via mass transfer at any given age in both cases. However, the distributions of the BS populations on CMD are different.

18 pages, 5 figures, 2 tables

Related Organizations
Keywords

Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
bronze