Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Theses@asb
Research . 2022
Data sources: Theses@asb
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cosmology and Astroparticle Physics
Article . 2022 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 8 versions
addClaim

Decaying warm dark matter revisited

Authors: Holm, Emil Brinch; Tram, Thomas; id_orcid 0000-0002-2411-063X; Hannestad, Steen;

Decaying warm dark matter revisited

Abstract

AbstractDecaying dark matter models provide a physically motivated way of channeling energy between the matter and radiation sectors. In principle, this could affect the predicted value of the Hubble constant in such a way as to accommodate the discrepancies between CMB inferences and local measurements of the same. Here, we revisit the model of warm dark matter decaying non-relativistically to invisible radiation. In particular, we rederive the background and perturbation equations starting from a decaying neutrino model and describe a new, computationally efficient method of computing the decay product perturbations up to large multipoles. We conduct MCMC analyses to constrain all three model parameters, for the first time including the mass of the decaying species, and assess the ability of the model to alleviate the Hubble andσ8tensions, the latter being the discrepancy between the CMB and weak gravitational lensing constraints on the amplitude of matter fluctuations on an 8h-1Mpc-1scale. We find that the model reduces theH0tension from ∼ 4σto ∼ 3σand neither alleviates nor worsens theS8≡σ8(Ωm/0.3)0.5tension, ultimately showing only mild improvements with respect to ΛCDM. However, the values of the model-specific parameters favoured by data is found to be well within the regime of relativistic decays where inverse processes are important, rendering a conclusive evaluation of the decaying warm dark matter model open to future work.

Country
Denmark
Related Organizations
Keywords

Quantum optics, dark matter theory, Cosmology and Nongalactic Astrophysics (astro-ph.CO), cosmological neutrinos, Perturbations in context of PDEs, Dark matter and dark energy, Point estimation, cosmological parameters from CMBR, FOS: Physical sciences, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), cosmological perturbation theory, Weak interaction in quantum theory, Particle decays, Relativistic cosmology, Diffraction, scattering, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green