<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle $C$ that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the $C$ particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the $C$ particle whose charge is compensated by a heavy $X$ particle so that the relic abundance of dark matter consists mostly of symmetric $X$ and $\bar{X}$, with a small asymmetric component made up of $X$ and $C$. As the universe cools, it undergoes asymmetric recombination binding the free $C$s into $(XC)$ dark atoms efficiently. Even with a tiny asymmetric component, the presence of $C$ particles catalyzes tight coupling between the heavy dark matter $X$ and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.
24 pages + appendices, 7 figures. v2: references added, updated figures, matches published version
High Energy Physics - Phenomenology, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
High Energy Physics - Phenomenology, Cosmology and Nongalactic Astrophysics (astro-ph.CO), High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 42 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |