
arXiv: 1102.1992
Supernova distances provide a direct probe of cosmic acceleration, constraining dark energy. This leverage increases with survey redshift depth at a rate bounded by the systematic uncertainties. We investigate the impact of a wavelength-dependent, global correlation model of systematics in comparison to the standard local-redshift correlation model. This can arise from subclass uncertainties as features in the supernova spectrum redshift out of the observer photometric filters or spectral range. We explore the impact of such a systematic on ground-based supernova surveys such as Dark Energy Survey and LSST, finding distinctive implications. Extending the wavelength sensitivity to 1.05 microns through "extreme red" CCDs can improve the dark energy figure of merit by up to a factor 2.
8 pages, 5 figures
Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
