<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10871/11326
In electrical engineering metamaterials have been developed that offer unprecedented control over electromagnetic fields. Here we show that general relativity lends the theoretical tools for designing devices made of such versatile materials. Given a desired device function, the theory describes the electromagnetic properties that turn this function into fact. We consider media that facilitate space-time transformations and include negative refraction. Our theory unifies the concepts operating behind the scenes of perfect invisibility devices, perfect lenses, the optical Aharonov-Bohm effect and electromagnetic analogs of the event horizon, and may lead to further applications.
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), 530, General Relativity and Quantum Cosmology, 620, Physics - Optics, Optics (physics.optics)
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), 530, General Relativity and Quantum Cosmology, 620, Physics - Optics, Optics (physics.optics)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 610 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |