Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physiological Measurement
Article . 2020 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Restoration of the electrocardiogram during mechanical cardiopulmonary resuscitation

Authors: Isasi Liñero, Iraia; Irusta Zarandona, Unai; Aramendi Ecenarro, Elisabete; Idris, Ahamed; Sornmo, Leif;

Restoration of the electrocardiogram during mechanical cardiopulmonary resuscitation

Abstract

An artefact-free electrocardiogram (ECG) is essential during cardiac arrest to decide therapy such as defibrillation. Mechanical cardiopulmonary resuscitation (CPR) devices cause movement artefacts that alter the ECG. This study analyzes the effectiveness of mechanical CPR artefact suppression filters to restore clinically relevant ECG information.In total, 495 10 s ECGs were used, of which 165 were in ventricular fibrillation (VF), 165 in organized rhythms (OR) and 165 contained mechanical CPR artefacts recorded during asystole. CPR artefacts and rhythms were mixed at controlled signal-to-noise ratios (SNRs), ranging from -20 dB to 10 dB. Mechanical artefacts were removed using least mean squares (LMS), recursive least squares (RLS) and Kalman filters. Performance was evaluated by comparing the clean and the restored ECGs in terms of restored SNR, correlation-based similarity measures, and clinically relevant features: QRS detection performance for OR, and dominant frequency, mean amplitude and waveform irregularity for VF. For each filter, a shock/no-shock support vector machine algorithm based on multiresolution analysis of the restored ECG was designed, and evaluated in terms of sensitivity (Se) and specificity (Sp).The RLS filter produced the largest correlation coefficient (0.80), the largest average increase in SNR (9.5 dB), and the best QRS detection performance. The LMS filter best restored VF with errors of 10.3% in dominant frequency, 18.1% in amplitude and 11.8% in waveform irregularity. The Se/Sp of the diagnosis of the restored ECG were 95.1/94.5% using the RLS filter and 97.0/91.4% using the LMS filter.Suitable filter configurations to restore ECG waveforms during mechanical CPR have been determined, allowing reliable clinical decisions without interrupting mechanical CPR therapy.

Country
Spain
Keywords

Electrocardiography, Ventricular Fibrillation, Humans, Artifacts, Cardiopulmonary Resuscitation, Heart Arrest

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green