
Abstract We investigate the status of the gravitational arrow of time in the case of a spherical collapse of a fluid that conducts heat and radiates energy. In particular, we examine the results obtained by W. B. Bonnor in his 1985 paper where he found that the gravitational arrow of time was opposite to the thermodynamic arrow of time. The measure of gravitational epoch function P used by Bonnor was given by the ratio of the Weyl square to the Ricci square. In this paper, we have assumed the measure of gravitational entropy (GE) P 1 to be given by the ratio of the Weyl scalar to the Kretschmann scalar. Our analysis indicates that Bonnor’s result seems to be validated, i.e. the gravitational arrow and the thermodynamic arrow of time point in opposite directions. This strengthens the opinion that the Weyl proposal of GE applies only to the Universe as a whole (provided that we exclude the white holes).
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
