
D-branes are classified by twisted K-theory. Yet twisted K-theory is often hard to calculate. We argue that, in the case of a compactification on a simply-connected six manifold, twisted K-theory is isomorphic to a much simpler object, twisted homology. Unlike K-theory, homology can be twisted by a class of any degree and so it classifies not only D-branes but also M-branes. Twisted homology classes correspond to cycles in a certain bundle over spacetime, and branes may decay via Kachru-Pearson-Verlinde transitions only if this cycle is trivial. We provide a spectral sequence which calculates twisted homology, the kth step treats D(p-2k)-branes ending on Dp-branes.
29 pages, 3 eps figures, added Report-no
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), D-branes, Flux compactifications, FOS: Physical sciences, Differential and algebraic geometry, Physique atomique et nucléaire
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), D-branes, Flux compactifications, FOS: Physical sciences, Differential and algebraic geometry, Physique atomique et nucléaire
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
