<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This paper describes the application of a novel etch-stop technique, based on galvanic element formation, to the fabrication of micromechanical sensors. The theory of operation in tetramethyl ammonium hydroxide (TMAH) and hydrofluoric acid (HF) solutions is discussed, together with the main limitations. A number of devices are presented. These include a piezoresistive pressure sensor made with a galvanic etch stop in a 25% TMAH solution at 80 °C and the contactless fabrication in similar solutions of a vibration sensor based on free-standing crystalline silicon beams. The thickness definition and uniformity were found to be poorer with the cantilever than with the membrane type sensors. Oxygen in the solution was used to provide the cell current, which was therefore rather low. This resulted in a low package density of the sensor elements on the wafer. Free-standing thick polysilicon structures were also formed with a galvanic etch-stop technique in HF solutions. The selectivity of this process, and the thickness definition and uniformity were good. In these solutions, the cell current could be easily increased by adding other strong oxidizing agents, such as hydrogen peroxide. Therefore, high package densities could be achieved in these solutions.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |