Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Utrecht University R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nanotechnology
Article . 2014 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
Nanotechnology
Article . 2014
Nanotechnology
Article . 2014
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Core–shell reconfiguration through thermal annealing in FexO/CoFe2O4ordered 2D nanocrystal arrays

Authors: Yalcin, A. O.; de Nijs, B.; Fan, Z.; Tichelaar, F.D.; Vanmaekelbergh, D.A.M.; van Blaaderen, A.; Vlugt, T.J.H.; +2 Authors

Core–shell reconfiguration through thermal annealing in FexO/CoFe2O4ordered 2D nanocrystal arrays

Abstract

A great variety of single- and multi-component nanocrystals (NCs) can now be synthesized and integrated into nanocrystal superlattices. However, the thermal and temporal stability of these superstructures and their components can be a limiting factor for their application as functional devices. On the other hand, temperature induced reconstructions can also reveal opportunities to manipulate properties and access new types of nanostructures. In situ atomically resolved monitoring of nanomaterials provides insight into the temperature induced evolution of the individual NC constituents within these superstructures at the atomic level. Here, we investigate the effect of temperature annealing on 2D square and hexagonal arrays of FexO/CoFe2O4 core/shell NCs by in situ heating in a transmission electron microscope (TEM). Both cubic and spherical NCs undergo a core-shell reconfiguration at a temperature of approximately 300 ° C, whereby the FexO core material segregates at the exterior of the CoFe2O4 shell, forming asymmetric dumbbells ('snowman-type' particles) with a small FexO domain attached to a larger CoFe2O4 domain. Upon continued annealing, the segregated FexO domains form bridges between the CoFe2O4 domains, followed by coalescence of all domains, resulting in loss of ordering in the 2D arrays.

Country
Netherlands
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?