<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 25102075
There has been a great deal of interest in understanding, design and fabrication of bio-mimetic and bio-inspired adhesives in recent years. In this paper we present theoretical investigations on adhesion, friction behaviors and characteristics of fibrillar arrays composed of noninteracting carbon nanotubes for bio-inspired dry adhesives. Contact, compression, subsequent pulling off and dry sliding friction simulations were performed. It is demonstrated that there are two different adhesion forces during pull off. Static friction force values are in between 40 and 60 [Formula: see text] at different loads and they are significantly larger than the normal adhesion forces. Dynamic friction force and load are anisotropic and they depend on the direction of the motion. It is also found that friction force values and friction coefficients decrease although contact length and contact area increase when the loads are high. This is due to the arms of the nanotubes which bend significantly and act as stiffer springs at high loads.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |