<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Relativistic heavy ion collisions offer the possibility to produce exotic metastable states of nuclear matter containing (roughly) equal number of strangeness compared to the content in baryon number. The reasoning of both their stability and existence, the possible distillation of strangeness necessary for their formation and the chances for their detection are reviewed. In the later respect emphasize is put on the properties of small lumps of strange quark matter with respect to their stability against strong or weak hadronic decays. In addition, implications in astrophysics like the properties of neutron stars and the issue of baryonic dark matter will be discussed.
13 pages, 6 eps-figures, 1 gif-figure, Invited talk at the IV International Conference on 'Strangeness in Quark Matter', Padova (Italy), July 20 - 24, 1998
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, FOS: Physical sciences
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |