
We introduce quantum hybrid gates that act on qudits of different dimensions. In particular, we develop two representative two-qudit hybrid gates (SUM and SWAP) and many-qudit hybrid Toffoli and Fredkin gates. We apply the hybrid SUM gate to generating entanglement, and find that operator entanglement of the SUM gate is equal to the entanglement generated by it for certain initial states. We also show that the hybrid SUM gate acts as an automorphism on the Pauli group for two qudits of different dimension under certain conditions. Finally, we describe a physical realization of these hybrid gates for spin systems.
8 pages and 1 figure
Quantum Physics, quantum computation, SWAP, Quantum computation, SUM, qudits of possibly different dimensions, FOS: Physical sciences, entanglement, Quantum Physics (quant-ph), many-qudit Toffoli and Fredkin gates
Quantum Physics, quantum computation, SWAP, Quantum computation, SUM, qudits of possibly different dimensions, FOS: Physical sciences, entanglement, Quantum Physics (quant-ph), many-qudit Toffoli and Fredkin gates
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 66 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
