<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Summary: We try to carry over, as closely as possible, the well-known results for rotational dragging (Thirring, Brill and Cohen) to dragging due to linearly accelerated masses. To this end, a spherical, charged mass shell is linearly accelerated by a (weak) external, axisymmetric and dipolar charge distribution. It is shown that the interior of this (Reissner--Nordström-like) shell stays flat. The dragging of neutral test particles inside the shell, defined by their acceleration, scaled by the overall acceleration of the (rigid) shell, is calculated for the weak field case for a highly massive but weakly charged shell and for the general strong field case. The results compare favourably with the corresponding results for rotational dragging.
Equations of motion in general relativity and gravitational theory
Equations of motion in general relativity and gravitational theory
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |