Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Classical and Quantu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Classical and Quantum Gravity
Article . 2001 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 1999
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A topological signature in cosmic topology

Authors: A.F.F. Teixeira; Marcelo J. Rebouças; G.I. Gomero;

A topological signature in cosmic topology

Abstract

Two procedures for obtaining (extracting and constructing) the topological signature of any multiply connected Robertson-Walker (RW) universe are presented. It is shown through computer-aided simulations that both approaches give rise to the same topological signature for a multiply connected flat RW universe. The strength of these approaches is illustrated by extracting the topological signatures of a flat ($k=0$), an elliptic ($k=1$), and a hyperbolic ($k=-1$) multiply connected RW universes. We also show how separated contributions of the covering isometries add up to form the topological signature of a RW flat universe. There emerges from our theoretical results and simulations that the topological signature arises (in the mean) even when there are just a few images for each object. It is also shown that the mean pair separation histogram technique works, and that it is a suitable approach for studying the topological signatures of RW universes as well as the role of non-translational isometries.

27 pages, 7 figures, LaTeX2e. Inserted: clarifying details, a connection with CCP method, new references. To appear in Class. Quantum Grav. (2001) in the present form

Keywords

High Energy Physics - Theory, Astrophysics (astro-ph), FOS: Physical sciences, topological signature, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology, histogram technique, High Energy Physics - Theory (hep-th), covering isometries, Applications of global differential geometry to the sciences, Relativistic cosmology, Robertson-Walker universe

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%
Green
bronze