Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Classical and Quantu...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Classical and Quantum Gravity
Article . 2000 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 1999
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Topology of the future chronological boundary: universality for spacelike boundaries

Topology of the future chronological boundary: Universality for spacelike boundaries
Authors: Steven G. Harris;

Topology of the future chronological boundary: universality for spacelike boundaries

Abstract

A method is presented for imputing a topology for any chronological set, i.e., a set with a chronology relation, such as a spacetime or a spacetime with some sort of boundary. This topology is shown to have several good properties, such as replicating the manifold topology for a spacetime and replicating the expected topology for some simple examples of spacetime-with-boundary; it also allows for a complete categorical characterization, in topological categories, of the Future Causal Boundary construction of Geroch, Kronheimer, and Penrose, showing that construction to have a universal property for future-completing chronological sets with spacelike boundaries. Rigidity results are given for any reasonable future completion of a spacetime, in terms of the GKP boundary: In the imputed topology, any such boundary must be homeomorphic to the GKP boundary (if all points have indecomposable pasts) or to a topological quotient of a closely related boundary (if boundaries are spacelike). A large class of warped-product-type spacetimes with spacelike boundaries is examined, calculating the GKP and other possible boundaries, and showing that the imputed topology gives expected results; included among these are the Schwarzschild singularity and those Robertson-Walker singularities which are spacelike.

56 pages, AMS-TeX; 1 page of figure captions (TeX); 22 figures, EPS format; to be published in Quantum Class. Grav.; principal reason for replacement is to have the figures included (also, introduction is expanded slightly, and one example is simplified)

Related Organizations
Keywords

chronological set, causal boundary construction, topology, Black holes, Robertson-Walker singularities, General geometric structures on low-dimensional manifolds, FOS: Physical sciences, Einstein's equations (general structure, canonical formalism, Cauchy problems), General Relativity and Quantum Cosmology (gr-qc), Schwarzschild singularity, Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory, General Relativity and Quantum Cosmology, Relativistic cosmology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Average
Green
bronze