Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Iterative reconstruction techniques in emission computed tomography

Authors: Jinyi Qi; Richard M. Leahy;

Iterative reconstruction techniques in emission computed tomography

Abstract

In emission tomography statistically based iterative methods can improve image quality relative to analytic image reconstruction through more accurate physical and statistical modelling of high-energy photon production and detection processes. Continued exponential improvements in computing power, coupled with the development of fast algorithms, have made routine use of iterative techniques practical, resulting in their increasing popularity in both clinical and research environments. Here we review recent progress in developing statistically based iterative techniques for emission computed tomography. We describe the different formulations of the emission image reconstruction problem and their properties. We then describe the numerical algorithms that are used for optimizing these functions and illustrate their behaviour using small scale simulations.

Related Organizations
Keywords

Likelihood Functions, Models, Statistical, Computers, Models, Theoretical, Humans, Radiographic Image Interpretation, Computer-Assisted, Computer Simulation, Poisson Distribution, Algorithms, Tomography, Emission-Computed

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    317
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
317
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?