Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Physica Scripta
Article . 1985 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-Affine Fractals and Fractal Dimension

Self-affine fractals and fractal dimension.
Authors: Benoit B. Mandelbrot;

Self-Affine Fractals and Fractal Dimension

Abstract

Evaluating a fractal curve's approximate length by walking a compass defines a compass exponent. Long ago, I showed that for a self-similar curve (e.g., a model of coastline), the compass exponent coincides with all the other forms of the fractal dimension, e.g., the similarity, box or mass dimensions. Now walk a compass along a self-affine curve, such as a scalar Brownian record B(t). It will be shown that a full description in terms of fractal dimension is complex. Each version of dimension has a local and a global value, separated by a crossover. First finding: the basic methods of evaluating the global fractal dimension yield 1: globally, a self-affine fractal behaves as it if were not fractal. Second finding: the box and mass dimensions are 1.5, but the compass dimension is D = 2. More generally, for a fractional Bownian record BH(t), (e.g., a model of vertical cuts of relief), the global fractal dimensions are 1, several local fractal dimensions are 2-H, and the compass dimension is 1/H. This 1/H is the fractal dimension of a self-similar fractal trail, whose definition was already implicit in the definition of the record of BH(t).

Related Organizations
Keywords

Fractals, Generalized stochastic processes, Dimension theory in general topology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    852
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
852
Top 0.1%
Top 0.1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?