Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The indentation behaviour of hard metals

Authors: J E Field; C J Studman;

The indentation behaviour of hard metals

Abstract

The indentation behaviour of hard materials which deform plastically and also exhibit surface fracture is discussed. It is shown that both radial and circumferential fracture can develop around the indentation and that this can be explained in terms of a transition from elastic/plastic behaviour. In general the circumferential cracks form at lower loads but remain short and shallow, and their initiation is affected by the grain size of the material. Experiments with a hard spherical indenter showed that radial cracks in water-quenched EN44B steel develop at loads above approximately 40 F*, where F* is the applied load to cause the first plastic deformation. Residual stresses in the surface layers can cause these cracks to continue growing after load removal. Finally, an equation relating contact area and pressure is developed from earlier work of K L Johnson (1970) and it is shown that this gives good agreement with experiment.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!