Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

THE MAGNETIC FIELD OF THE IRREGULAR GALAXY NGC 4214

Authors: Eric M. Wilcots; Timothy Robishaw; Amanda A. Kepley; Amanda A. Kepley; Amanda A. Kepley; Ellen G. Zweibel; Kelsey E. Johnson; +1 Authors

THE MAGNETIC FIELD OF THE IRREGULAR GALAXY NGC 4214

Abstract

We examine the magnetic field in NGC 4214, a nearby irregular galaxy, using multi-wavelength radio continuum polarization data from the Very Large Array. We find that the global radio continuum spectrum shows signs that free-free absorption and/or synchrotron losses may be important. The 3cm radio continuum morphology is similar to that of the Halpha, while the 20cm emission is more diffuse. We estimate that 50% of the radio continuum emission in the center of the galaxy is thermal. Our estimate of the magnetic field strength is $30\pm 9.5$ \uG\ in the center and $10\pm3$ \uG\ at the edges. We find that the hot gas, magnetic, and the gravitational pressures are all the same order of magnitude. Inside the central star forming regions, we find that the thermal and turbulent pressures of the HII regions dominate the pressure balance. We do not detect any significant polarization on size scales greater than 200 pc. We place an upper limit of 8 \uG\ on the uniform field strength in this galaxy. We suggest that the diffuse synchrotron region, seen to the north of the main body of emission at 20cm, is elongated due to a uniform magnetic field with a maximum field strength of 7.6 \uG. We find that, while the shear in NGC 4214 is comparable to that of the Milky Way, the supernova rate is half that of the Milky Way and suggest that the star formation episode in NGC 4214 needs additional time to build up enough turbulence to drive an $��-��$ dynamo.

Accepted by ApJ. Version with high resolution figures at http://www.astro.virginia.edu/~aak8t/data/n4214/ms.pdf

Keywords

Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - Astrophysics of Galaxies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Top 10%
Green
gold