
I discuss singular space-times in the context of the geometrized formulation of Newtonian gravitation. I argue first that geodesic incompleteness is a natural criterion for when a model of geometrized Newtonian gravitation is singular, and then I show that singularities in this sense arise naturally in classical physics by stating and proving a classical version of the Raychaudhuri-Komar singularity theorem.
Physics - History and Philosophy of Physics, Classical Physics (physics.class-ph), History and Philosophy of Physics (physics.hist-ph), FOS: Physical sciences, Physics - Classical Physics, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
Physics - History and Philosophy of Physics, Classical Physics (physics.class-ph), History and Philosophy of Physics (physics.hist-ph), FOS: Physical sciences, Physics - Classical Physics, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
