Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Infection Control an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Infection Control and Hospital Epidemiology
Article . 1994 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Bootstrapping

Authors: B, Gunter;
Abstract

Two questions confront data analysts: What's going on in the data? And how certain are the conclusions? One must deal with both questions to make rational decisions. John Tukey has called the two aspects of analysis exploratory and confirmatory. Consider, for example, a study in which patient data are analyzed for patterns that might identify causative agents for a particular disease. First, one should explore the data to reveal meaningful regularity (or perhaps irregularity might be a better way of saying it). For example, is there clustering in the geographic distribution of the patients that might indicate an environmental agent? After tentative pattern identification, confirmation is required to determine whether the patterns could simply be due to chance variation. That is, is the clustering strong enough to merit further detailed investigation or will the pattern disappear when further data are analyzed?Classical statistical methods approach these questions through the foundation of probabilistic inference. I believe that it is no exaggeration to say that development of such methods during the 20th century are among the most important achievements in the history of science. They have contributed to the scientific method a systematic way of discerning what A.S.C. Ehrenberg calls “lawlike relationships” in empirical data. Their application has been decisive to progress in fields as diverse as nuclear physics, engineering design, genetics, agriculture, and paleontology, as well as medical science.

Keywords

Cross Infection, Data Interpretation, Statistical, Statistics as Topic, Humans, Hospitals, Probability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!