
We have used data from the Sloan Digital Sky Survey (SDSS) Data Release 5 to explore the overall structure and substructure of the stellar halo of the Milky Way using about 4 million color-selected main sequence turn-off stars. We fit oblate and triaxial broken power-law models to the data, and found a `best-fit' oblateness of the stellar halo 0.5~100pc, after accounting for the (known) contribution of Poisson uncertainties. The fractional RMS deviation of the actual stellar distribution from any smooth, parameterized halo model is >~40%: hence, the stellar halo is highly structured. We compared the observations with simulations of galactic stellar halos formed entirely from the accretion of satellites in a cosmological context by analysing the simulations in the same way as the data. While the masses, overall profiles, and degree of substructure in the simulated stellar halos show considerable scatter, the properties and degree of substructure in the Milky Way's halo match well the properties of a `typical' stellar halo built exclusively out of the debris from disrupted satellite galaxies. Our results therefore point towards a picture in which an important fraction of the Milky Way's stellar halo has been accreted from satellite galaxies.
Submitted to the Astrophysical Journal. 14 pages; 11 figures
astro-ph, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
astro-ph, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 371 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
