
arXiv: astro-ph/0606246
The dynamics of the Magellanic Stream (MS) as a series of clouds extending from the Magellanic Clouds (MCs) to the south Galactic pole is affected by the distribution and the amount of matter in the Milky Way. We calculate the gravitational effect of the Galactic disk on the MS in the framework of modified Newtonian dynamics(MOND) and compare with observations of the Stream's radial velocity. We consider the tidal force of the Galaxy, which strips material from the MCs to form the MS, and, using a no-halo model of the Galaxy, we ignore the effect of the drag of the Galactic halo on the MS. We also compare the MONDian dynamics with that in logarithmic and power-law dark halo models and show that the MOND theory seems plausible for describing the dynamics of satellite galaxies such as the MCs. Finally, we perform a maximum likelihood analysis to obtain the best MOND parameters for the Galactic disk.
11 pages, 6 figures
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
