Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2004 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2003
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Velocity Dispersion Profiles in Dark Matter Halos

Authors: Hoeft, M.; Muecket, J. P.; Gottloeber, S.;

Velocity Dispersion Profiles in Dark Matter Halos

Abstract

Numerous numerical studies indicate that dark matter halos show an almost universal radial density profile. The origin of the profile is still under debate. We investigate this topic and pay particular attention to the velocity dispersion profile. To this end we have performed high-resolution simulations with two independent codes, ART and {\sc Gadget}. The radial velocity dispersion can be approximated as function of the potential by $��_r^2 = a (��/ ��_{\rm{out}})^��(��_{\rm{out}} - ��)$, where $��_{\rm{out}}$ is the outer potential of the halo. For the parameters $a$ and $��$ we find $a=0.29\pm0.04$ and $��=0.41\pm0.03$. We find that the power-law asymptote $��^2 \propto ��^��$ is valid out to much larger distances from the halo center than any power asymptote for the density profile $��\propto r^{-n}$. The asymptotic slope $n(r \to 0)$ of the density profile is related to the exponent $��$ via $n=2��/(1+��)$. Thus the value obtained for $��$ from the available simulation data can be used to obtain an estimate of the density profile below presently resolved scales. We predict a continuously decreasing $n$ towards the halo center with the asymptotic value $n \lesssim 0.58$ at $r=0$.

9 pages, 5 figures bw, accepted for publication in ApJ

Related Organizations
Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Green
gold