
doi: 10.1086/378940
We investigate the cosmological evolution of the hard X-ray luminosity function (HXLF) of active galactic nuclei (AGNs) in the 2-10 keV luminosity range of 1041.5-1046.5 ergs s-1 as a function of redshift up to 3. From a combination of surveys conducted at photon energies above 2 keV with HEAO 1, ASCA, and Chandra, we construct a highly complete (>96%) sample consisting of 247 AGNs over the wide flux range of 10-10 to 3.8 × 10-15 ergs cm-2 s-1 (2-10 keV). For our purpose, we develop an extensive method of calculating the intrinsic (before absorption) HXLF and the absorption (NH) function. This utilizes the maximum likelihood method, fully correcting for observational biases with consideration of the X-ray spectrum of each source. We find that (1) the fraction of X-ray absorbed AGNs decreases with the intrinsic luminosity and (2) the evolution of the HXLF of all AGNs (including both type I and type II AGNs) is best described with a luminosity-dependent density evolution (LDDE) where the cutoff redshift increases with the luminosity. Our results directly constrain the evolution of AGNs that produce a major part of the hard X-ray background, thus solving its origin quantitatively. A combination of the HXLF and the NH function enables us to construct a purely observation-based population synthesis model. We present basic consequences of this model and discuss the contribution of Compton-thick AGNs to the rest of the hard X-ray background.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 937 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
