Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2003 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.25916/su...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2003
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
https://dx.doi.org/10.25916/su...
Other literature type . 2024
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

When Is a Bulge Not a Bulge? Inner Disks Masquerading as Bulges in NGC 2787 and NGC 3945

Authors: Erwin, Peter; Vega Beltran, Juan Carlos; Graham, Alister W.; Beckman, John E.;

When Is a Bulge Not a Bulge? Inner Disks Masquerading as Bulges in NGC 2787 and NGC 3945

Abstract

We present a detailed morphological, photometric, and kinematic analysis of two barred S0 galaxies with large, luminous inner disks inside their bars. We show that these structures, in addition to being geometrically disklike, have exponential profiles (scale lengths ~300-500 pc) distinct from the central, nonexponential bulges. We also find them to be kinematically disklike. The inner disk in NGC 2787 has a luminosity roughly twice that of the bulge; but in NGC 3945, the inner disk is almost 10 times more luminous than the bulge, which itself is extremely small (half-light radius ≈100 pc, in a galaxy with an outer ring of radius ≈14 kpc) and has only ~5% of the total luminosity—a bulge/total ratio much more typical of an Sc galaxy. We estimate that at least 20% of (barred) S0 galaxies may have similar structures, which means that their bulge/disk ratios may be significantly overestimated. These inner disks dominate the central light of their galaxies; they are at least an order of magnitude larger than typical 'nuclear disks' found in elliptical and early‐type spiral galaxies. Consequently, they must affect the dynamics of the bars in which they reside.

Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics, 520

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
Green
gold