Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2003 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2003
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Runaway Migration and the Formation of Hot Jupiters

Authors: Frédéric Masset; John C. B. Papaloizou;

Runaway Migration and the Formation of Hot Jupiters

Abstract

[Abridged] We evaluate the coorbital corotation torque on a migrating protoplanet. The coorbital torque is assumed to come from orbit crossing fluid elements which exchange angular momentum with the planet when they execute a U-turn at the end of horseshoe streamlines. When the planet migrates inward, the fluid elements of the inner disk undergo one such exchange as they pass to the outer disk. The angular momentum they gain is removed from the planet, and this corresponds to a negative contribution to the corotation torque, which scales with the drift rate. In addition, the material trapped in the coorbital region drifts radially with the planet giving a positive contribution to the corotation torque, which also scales with the drift rate. These two contributions do not cancel out if the coorbital region is depleted, in which case there is a net corotation torque which scales with the drift rate and the mass deficit in the coorbital region, and which has same sign as the drift rate. This leads to a positive feedback on the migrating planet. In particular, if the coorbital mass deficit is larger than the planet mass, the migration rate undergoes a runaway which can vary the protoplanet semi-major axis by 50% over a few tens of orbits. This can happen only if the planet mass is sufficient to create a dip or gap in its surrounding region, and if the surrounding disk mass is larger than the planet mass. This typically corresponds to planet masses in the sub-Saturnian to Jovian mass range embedded in massive protoplanetary disks. Runaway migration is a good candidate to account for the orbital characteristics of close orbiting giant planets, most of which have sub-Jovian masses. Further, we show that in the runaway regime, migration can be directed outwards.

Accepted for publication in ApJ. Paper with high-resolution figures available at http://www-star.qmw.ac.uk/~masset/publis/runaway.ps.gz

Related Organizations
Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    280
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
280
Top 1%
Top 1%
Top 1%
Green
gold